Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.507
Filtrar
1.
Dis Aquat Organ ; 158: 101-114, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661141

RESUMO

Snakehead vesiculovirus (SHVV) is a negative-sense single-stranded RNA virus that infects snakehead fish. This virus leads to illness and mortality, causing significant economic losses in the snakehead aquaculture industry. The replication and spread of SHVV in cells, which requires glutamine as a nitrogen source, is accompanied by alterations in intracellular metabolites. However, the metabolic mechanisms underlying the inhibition of viral replication by glutamine deficiency are poorly understood. This study utilized liquid chromatography-mass spectrometry to measure the differential metabolites between the channel catfish Parasilurus asotus ovary cell line infected with SHVV under glutamine-containing and glutamine-deprived conditions. Results showed that the absence of glutamine regulated 4 distinct metabolic pathways and influenced 9 differential metabolites. The differential metabolites PS(16:0/16:0), 5,10-methylene-THF, and PS(18:0/18:1(9Z)) were involved in amino acid metabolism. In the nuclear metabolism functional pathway, differential metabolites of guanosine were observed. In the carbohydrate metabolism pathway, differential metabolites of UDP-d-galacturonate were detected. In the signal transduction pathway, differential metabolites of SM(d18:1/20:0), SM(d18:1/22:1(13Z)), SM(d18:1/24:1(15 Z)), and sphinganine were found. Among them, PS(18:0/18:1(9Z)), PS(16:0/16:0), and UDP-d-galacturonate were involved in the synthesis of phosphatidylserine and glycoprotein. The compound 5,10-methylene-THF provided raw materials for virus replication, and guanosine and sphingosine are related to virus virulence. The differential metabolites may collectively participate in the replication, packaging, and proliferation of SHVV under glutamine deficiency. This study provides new insights and potential metabolic targets for combating SHVV infection in aquaculture through metabolomics approaches.


Assuntos
Glutamina , Vesiculovirus , Replicação Viral , Animais , Glutamina/metabolismo , Vesiculovirus/fisiologia , Doenças dos Peixes/virologia , Metabolômica , Linhagem Celular , Ictaluridae
2.
Food Chem ; 448: 139027, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552462

RESUMO

In this study, a hydrophobic and antibacterial pad was prepared to preserve Channel Catfish (Ictalurus punctatus). The pad composite the microfibrillated cellulose and ß-cyclodextrin/nisin microcapsules. The hydrophobic pad ensures a dry surface in contact with the fish, reducing microbial contamination. The pad has a low density and high porosity, making it lightweight and suitable for packaging applications, while also providing a large surface area for antibacterial activity. Results demonstrated that this antibacterial pad exhibits an ultralow density of 9.0 mg/cm3 and an ultrahigh porosity of 99.10%. It can extend the shelf life of Channel Catfish fillets to 9 days at 4 °C, with a total volatile base nitrogen below 20 mg/100 g. The study proposes a novel solution for preserving aquatic products by combining antibacterial substances with the natural base material aerogel. This approach also extends the utilization of aerogel and nisin in food packaging.


Assuntos
Antibacterianos , Celulose , Embalagem de Alimentos , Conservação de Alimentos , Géis , Ictaluridae , Nisina , beta-Ciclodextrinas , Animais , Celulose/química , Antibacterianos/farmacologia , Antibacterianos/química , beta-Ciclodextrinas/química , Nisina/química , Nisina/farmacologia , Conservação de Alimentos/métodos , Conservação de Alimentos/instrumentação , Embalagem de Alimentos/instrumentação , Ictaluridae/microbiologia , Géis/química , Cápsulas/química
3.
Food Microbiol ; 120: 104489, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431332

RESUMO

Aeromonas veronii is associated with food spoilage and some human diseases, such as diarrhea, gastroenteritis, hemorrhagic septicemia or asymptomatic and even death. This research investigated the mechanism of the growth, biofilm formation, virulence, stress resistance, and spoilage potential of Bacillus subtilis lipopeptide against Aeromonas veronii. Lipopeptides suppressed the transmembrane transport of Aeromonas veronii by changing the cell membrane's permeability, the structure of membrane proteins, and Na+/K+-ATPase. Lipopeptide significantly reduced the activities of succinate dehydrogenase (SDH) and malate dehydrogenase (MDH) by 86.03% and 56.12%, respectively, ultimately slowing Aeromonas veronii growth. Lipopeptides also restrained biofilm formation by inhibiting Aeromonas veronii motivation and extracellular polysaccharide secretion. Lipopeptides downregulated gene transcriptional levels related to the virulence and stress tolerance of Aeromonas veronii. Furthermore, lipopeptides treatment resulted in a considerable decrease in the extracellular protease activity of Aeromonas veronii, which restrained the decomposing of channel catfish flesh. This research provides new insights into lipopeptides for controlling Aeromonas veronii and improving food safety.


Assuntos
Aeromonas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Ictaluridae , Animais , Humanos , Aeromonas veronii/genética , Aeromonas veronii/metabolismo , Bacillus subtilis/genética , Biofilmes , Lipopeptídeos/farmacologia , Lipopeptídeos/metabolismo , Infecções por Bactérias Gram-Negativas/genética , Aeromonas/genética
4.
Environ Sci Pollut Res Int ; 31(11): 17387-17400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340297

RESUMO

The spatiotemporal distribution and transport of mercury, zinc, molybdenum, rubidium, and strontium from alpine terrestrial ecosystems to alpine lake and mountain stream populations of Cottus poecilopus were investigated. Metals were measured for 66 wild fish collected from different lakes and Javorinka stream across. Mercury was measured in the pectoral fins, other elements in the skull. Bullheads contained more metals in the alpine lakes than in the mountain stream. In particular, mercury and zinc concentrations in lake bullheads were 6 and 2.5 times higher, respectively, than those of stream-dwelling fish. New data were generated on metal bioaccumulation in fish of understudied West Carpathian alpine lake environments. In July 2018, a major flood occurred in the area of the Javorinka. Already then, the mercury content in bullheads increased significantly. Bioaccumulation of mercury in fish occurred very quickly after the flood and was also significant in the following 2019. Then, the concentrations of mercury quickly decreased up to 70% in 2021-2022. Average concentrations of molybdenum and rubidium in bullheads in the stream rapidly declined in the year following the flood disturbance, but within less than 2 years, the metal levels stabilized at about the same level as in 2017 prior the flood. Strontium concentrations in fish dropped rapidly immediately after the flood, increased in the following years, and dropped again after 4 years, suggesting that many more factors are influencing strontium bioaccumulation in fish that are comparable in magnitude to the flood. The most serious warning seems to be the absence of biogenic zinc. The average concentration in the Alpine bullheads population in the stream has declined by 70% in less than 5 years and is steadily declining. An important result of this study is the demonstration that disturbance by a single factor (heavy rainfall and flooding) has a clear and timely effect on average metal concentrations in the fish population.


Assuntos
Ictaluridae , Mercúrio , Perciformes , Poluentes Químicos da Água , Animais , Ecossistema , Molibdênio , Rubídio , Inundações , Metais , Mercúrio/análise , Peixes , Zinco , Estrôncio , Poluentes Químicos da Água/análise , Monitoramento Ambiental
5.
Immunogenetics ; 76(1): 51-67, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38197898

RESUMO

The CD28-B7 interaction is required to deliver a second signal necessary for T-cell activation. Additional membrane receptors of the CD28 and B7 families are also involved in immune checkpoints that positively or negatively regulate leukocyte activation, in particular T lymphocytes. BTLA is an inhibitory receptor that belongs to a third receptor family. Fish orthologs exist only for some of these genes, and the potential interactions between the corresponding ligands remain mostly unclear. In this work, we focused on the channel catfish (Ictalurus punctatus), a long-standing model for fish immunology, to analyze these co-stimulatory and co-inhibitory receptors. We identified one copy of cd28, ctla4, cd80/86, b7h1/dc, b7h3, b7h4, b7h5, two btla, and four b7h7 genes. Catfish CD28 contains the highly conserved mammalian cytoplasmic motif for PI3K and GRB2 recruitment, however this motif is absent in cyprinids. Fish CTLA4 share a C-terminal putative GRB2-binding site but lacks the mammalian PI3K/GRB2-binding motif. While critical V-domain residues for human CD80 or CD86 binding to CD28/CTLA4 show low conservation in fish CD80/86, C-domain residues are highly conserved, underscoring their significance. Catfish B7H1/DC had a long intracytoplasmic domain with a P-loop-NTPase domain that is absent in mammalian sequences, while the lack of NLS motif in fish B7H4 suggests this protein may not regulate cell growth when expressed intracellularly. Finally, there is a notable expansion of fish B7H7s, which likely play diverse roles in leukocyte regulation. Overall, our work contributes to a better understanding of fish leukocyte co-stimulatory and co-inhibitory receptors.


Assuntos
Antígenos CD28 , Ictaluridae , Animais , Humanos , Antígenos CD28/genética , Antígenos CD28/metabolismo , Antígeno CTLA-4 , Ictaluridae/genética , Ictaluridae/metabolismo , Antígenos CD , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Ligantes , Moléculas de Adesão Celular , Fosfatidilinositol 3-Quinases , Mamíferos
6.
J Fish Dis ; 47(3): e13902, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38041240

RESUMO

To prevent catfish idiopathic anaemia, diets fortified with iron have been adopted as a regular practice on commercial catfish farms to promote erythropoiesis. However, the effects of prolonged exposure of excess dietary iron on production performance and disease resistance for hybrid catfish (Ictalurus punctatus × I. furcatus) remains unknown. Four experimental diets were supplemented with ferrous monosulphate to provide 0, 500, 1000, and 1500 mg of iron per kg of diet. Groups of 16 hybrid catfish juveniles (~22.4 g) were stocked in each of 20, 110-L aquaria (n = 5), and experimental diets were offered to the fish to apparent satiation for 12 weeks. At the end of the study, production performance, survival, condition indices, as well as protein and iron retention were unaffected by the dietary treatments. Blood haematocrit and the iron concentration in the whole-body presented a linear increase with the increasing the dietary iron. The remaining fish from the feeding trial was challenged with Edwardsiella ictaluri. Mortality was mainly observed for the dietary groups treated with iron supplemented diets. The results for this study suggest that iron supplementation beyond the required levels does affect the blood production, and it may increase their susceptibility to E. ictaluri infection.


Assuntos
Peixes-Gato , Infecções por Enterobacteriaceae , Doenças dos Peixes , Ictaluridae , Animais , Resistência à Doença , Edwardsiella ictaluri , Ferro/farmacologia , Ferro da Dieta , Hematócrito , Doenças dos Peixes/prevenção & controle , Dieta/veterinária , Suplementos Nutricionais , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/veterinária
7.
Fish Shellfish Immunol ; 144: 109248, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030028

RESUMO

Columnaris disease continues to inflict substantial losses among freshwater cultured species since its first description one hundred years ago. The experimental and anecdotal evidence suggests an expanded range and rising virulence of columnaris worldwide due to the warming global climate. The channel catfish (Ictalurus punctatus) are particularly vulnerable to columnaris. A recently developed live attenuated vaccine (17-23) for Flavobacterium columnare (now Flavobacterium covae sp. nov.) demonstrated superior protection for vaccinated catfish against genetically diverse columnaris isolates. In this study, we aimed to elucidate the molecular mechanisms and patterns of immune evasion and host manipulation linked to virulence by comparing gene expression changes in the host after the challenge with a virulent (BGSF-27) or live attenuated F. covae sp. nov. vaccine (17-23). Thirty-day-old fry were accordingly challenged with either virulent or vaccine isolates. Gill tissues were collected at 0 h (control), 1 h, and 2 h post-infection, which are two critical time points in early host-pathogen interactions. Transcriptome profiling of the gill tissues revealed a larger number (518) of differentially expressed genes (DEGs) in vaccine-exposed fish than those exposed to the virulent pathogen (321). Pathway analyses suggested potent suppression of early host immune responses by the virulent isolate through a higher expression of nuclear receptor corepressors (NCoR) responsible for antagonizing macrophage and T-cell signaling. Conversely, in vaccinated fry, we observed induction of Ca2+/calmodulin-dependent protein kinase II (CAMKII), responsible for clearing NCoR, and commensurate up-regulation of transcription factor AP-1 subunits, c-Fos, and c-Jun. As in mammalian systems, AP-1 expression was connected with a broad immune activation in vaccinated fry, including induction of CC chemokines, proteinases, iNOS, and IL-12b. Relatedly, divergent expression patterns of Src tyrosine kinase Lck, CD44, and CD28 indicated a delay or suppression of T-cell adhesion and activation in fry exposed to the virulent isolate. Broader implications of these findings will be discussed. The transcriptomic differences between virulent and attenuated bacteria may offer insights into how the host responds to the vaccination or infection and provide valuable knowledge to understand the early immune mechanisms of columnaris disease in aquaculture.


Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Ictaluridae , Animais , Vacinas Atenuadas , Flavobacterium/fisiologia , Mamíferos
8.
J Food Prot ; 87(1): 100192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949412

RESUMO

Antimicrobial resistance (AMR) trends in 114 generic Escherichia coli isolated from channel catfish and related fish species were investigated in this study. Of these, 45 isolates were from commercial-sized channel catfish harvested from fishponds in Alabama, while 69 isolates were from Siluriformes products, accessed from the U.S. Department of Agriculture Food Safety and Inspection Service' (FSIS) National Antimicrobial Resistance Monitoring System (NARMS) program. Antibiotic susceptibility testing and whole genome sequencing were performed using the GenomeTrakr protocol. Upon analysis, the fishpond isolates showed resistance to ampicillin (44%), meropenem (7%) and azithromycin (4%). The FSIS NARMS isolates showed resistance to tetracycline (31.9%), chloramphenicol (20.3%), sulfisoxazole (17.4%), ampicillin (5.8%) and trimethoprim-sulfamethoxazole, nalidixic acid, amoxicillin-clavulanic acid, azithromycin and cefoxitin below 5% each. There was no correlation between genotypic and phenotypic resistance in the fishpond isolates, however, there was in NARMS isolates for folate pathway antagonists: Sulfisoxazole vs. sul1 and sul2 (p = 0.0042 and p < 0.0001, respectively) and trimethoprim-sulfamethoxazole vs. dfrA16 and sul1 (p = 0.0290 and p = 0.013, respectively). Furthermore, correlations were found for tetracyclines: Tetracycline vs. tet(A) and tet(B) (p < 0.0001 each), macrolides: Azithromycin vs. mph(E) and msr(E) (p = 0.0145 each), phenicols: Chloramphenicol vs. mdtM (p < 0.0001), quinolones: Nalidixic acid vs. gyrA_S83L=POINT (p = 0.0004), and ß-lactams: Ampicillin vs. blaTEM-1 (p < 0.0001). Overall, we recorded differences in antimicrobial susceptibility testing profiles, phenotypic-genotypic concordance, and resistance to critically important antimicrobials, which may be a public health concern.


Assuntos
Escherichia coli , Ictaluridae , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Azitromicina/farmacologia , Tetraciclina/farmacologia , Ácido Nalidíxico/farmacologia , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Sulfisoxazol/farmacologia , Testes de Sensibilidade Microbiana , Ampicilina/farmacologia , Cloranfenicol
9.
J Fish Dis ; 47(4): e13910, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38153008

RESUMO

Enteric septicemia of catfish (ESC), caused by the gram-negative enteric bacteria Edwardsiella ictaluri, is a significant threat to catfish aquaculture in the southeastern United States. Antibiotic intervention can reduce mortality; however, antibiotic use results in an imbalance, or dysbiosis, of the gut microbiota, which may increase susceptibility of otherwise healthy fish to enteric infections. Herein, recovery of the intestinal microbiota and survivability of channel catfish in response to ESC challenge was evaluated following a 10-day course of florfenicol and subsequent probiotic or prebiotic supplementation. Following completion of florfenicol therapy, fish were transitioned to a basal diet or diets supplemented with a probiotic or prebiotic for the remainder of the study. Digesta was collected on Days 0, 4, 8 and 12, beginning on the first day after cessation of antibiotic treatment, and gut microbiota was characterized by Illumina sequencing of the 16S rRNA gene (V4 region). Remaining fish were challenged with E. ictaluri and monitored for 32 days post-challenge. Florfenicol administration resulted in dysbiosis characterized by inflated microbial diversity, which began to recover in terms of diversity and composition 4 days after cessation of florfenicol administration. Fish fed the probiotic diet had higher survival in response to ESC challenge than the prebiotic (p = .019) and negative control (p = .029) groups.


Assuntos
Peixes-Gato , Infecções por Enterobacteriaceae , Doenças dos Peixes , Microbioma Gastrointestinal , Ictaluridae , Probióticos , Tianfenicol/análogos & derivados , Animais , Edwardsiella ictaluri/fisiologia , Prebióticos , Disbiose , RNA Ribossômico 16S , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Antibacterianos/farmacologia , Suplementos Nutricionais , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/veterinária
10.
Artigo em Inglês | MEDLINE | ID: mdl-38128380

RESUMO

Growth is an important economically trait for aquatic animals. The popularity of farmed channel catfish (Ictalurus punctatus) in China has recently surged, prompting a need for research into the genetic mechanisms that drive growth and development to expedite the selection of fast-growing variants. In this study, the brain, liver and muscle transcriptomes of channel catfish between fast-growing and slow-growing groups were analyzed using RNA-Seq. Totally, 63, 110 and 86 differentially expressed genes (DEGs) were from brain, liver and muscle tissues. DEGs are primarily involved in growth, development, metabolism and immunity, which are related to the growth regulation of channel catfish, such as growth hormone receptor b (ghrb), fibroblast growth factor receptor 4 (fgfr4), bone morphogenetic protein 1a (bmp1a), insulin-like growth factor 2a (igf2a), collagen, type I, alpha 1a (col1a1a), acyl-CoA synthetase long chain family member 2 (acsl2) and caveolin 1 (cav1). This study advances our knowledge of the genetic mechanisms accounting for differences in growth rate and offers crucial gene resources for future growth-related molecular breeding programs in channel catfish.


Assuntos
Ictaluridae , Animais , Ictaluridae/genética , Transcriptoma , Perfilação da Expressão Gênica , Fígado , Músculos , Encéfalo
11.
Dev Comp Immunol ; 153: 105121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135021

RESUMO

Leukocyte immune-type receptors (LITRs) represent a polymorphic and polygenic family of immunoregulatory proteins originally discovered in channel catfish (Ictalurus punctatus; IpLITRs). Belonging to the immunoglobulin superfamily (IgSF), IpLITRs are generally classified as stimulatory or inhibitory types based on their utilization of various intracellular tyrosine-based signaling motifs. While research has shown that IpLITRs can activate as well as abrogate different immune cell effector responses including phagocytosis, recent identification of LITRs within the zebrafish genome (Danio rerio; DrLITRs) revealed the existence of fish LITR-types uniquely containing counteracting stimulatory and inhibitory cytoplasmic tail (CYT) region motifs (i.e., an immunoreceptor tyrosine-based activation motif; ITAM, and immunoreceptor tyrosine-based inhibitory motif; ITIM) within the same receptor. This arrangement is unusual as these motifs typically exist on separate stimulatory (i.e., ITAM-containing) or inhibitory (i.e., ITIM-containing) immunoregulatory receptors that then co-engage to fine-tune cellular signaling and effector responses. Using a flow cytometric-based phagocytosis assay, we show here that engagement of DrLITR 1.2-expressing cells with antibody coated 4.5 µm beads causes a robust ITAM-dependent phagocytic response and reveal that its tandem ITIM motif surprisingly enhances the DrLITR 1.2-induced phagocytic activity while simultaneously decreasing the receptors ability to bind the beads. Confocal microscopy studies also revealed that the ITIM-associated inhibitory signaling molecule SHP-2 is localized to the phagocytic synapse during the phagocytic response. Overall, these results provide the first functional characterization of teleost immune receptors containing a tandem ITAM and ITIM and allow for the proposal of an intracytoplasmic tail signaling model for ITIM-mediated enhancement of ITAM-dependent cellular activation.


Assuntos
Ictaluridae , Peixe-Zebra , Animais , Leucócitos , Fagócitos , Transdução de Sinais , Tirosina/metabolismo , Motivos de Aminoácidos
12.
Aquat Toxicol ; 265: 106772, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38039693

RESUMO

In a previous study, adaptive responses to a single polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP), were identified in brown bullhead (Ameiurus nebulosus) captured from contaminated sites across the Great Lakes. The tumor suppressor p53 and phase I toxin metabolizing CYP1A genes showed a elevated and refractory response, respectively, up to the F1 generation (Williams and Hubberstey, 2014). As an extension to the first study, bullhead were exposed to sediment collected from sites along the Detroit River to see if these adaptive responses are attainable when fish from a contaminated site are exposed to a mixture of contaminants, instead of a single compound. p53 and CYP1A proteins were measured again with the addition of phase II glutathione-s-transferase (GST) activity in the present study. Three treatment groups were measured: acute (treated immediately), cleared (depurated for three months and subsequent treatment), and farm raised F1 offspring. All three treatment groups were exposed to clean and contaminated sediment for 24 and 96 h. Acute fish from contaminated sites exposed to contaminated sediment revealed an initial elevated p53 response that did not persist in fish after long-term contaminated sediment exposure. Acute fish from contaminated sites exposed to contaminated sediment revealed refractory CYP1A expression, which disappeared in cleared fish and whose F1 response overlapped with clean site F1 offspring. Decreasing GST activity was evident in both clean and contaminated fish over time, and only clean site fish responded to long-term contaminated sediment deliberately with increasing GST activity. Because p53 and CYP1A gene expression and GST activity responses did not overlap between contaminated fish treatment groups, our study suggests that contaminated fish have acclimated to the contaminants present in their environments and no evidence of adaptation could be detected within these biomarkers.


Assuntos
Ictaluridae , Poluentes Químicos da Água , Animais , Ictaluridae/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Rios , Poluentes Químicos da Água/toxicidade , Aclimatação
13.
PLoS One ; 18(12): e0296132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38153949

RESUMO

Edwardsiella ictaluri is a Gram-negative facultative intracellular fish pathogen causing enteric septicemia of catfish (ESC). While various secretion systems contribute to E. ictaluri virulence, the Type VI secretion system (T6SS) remains poorly understood. In this study, we constructed 13 E. ictaluri T6SS mutants using splicing by overlap extension PCR and characterized them, assessing their uptake and survival in channel catfish (Ictalurus punctatus) peritoneal macrophages, attachment and invasion in channel catfish ovary (CCO) cells, in vitro stress resistance, and virulence and efficacy in channel catfish. Among the mutants, EiΔevpA, EiΔevpH, EiΔevpM, EiΔevpN, and EiΔevpO exhibited reduced replication inside peritoneal macrophages. EiΔevpM, EiΔevpN, and EiΔevpO showed significantly decreased attachment to CCO cells, while EiΔevpN and EiΔevpO also displayed reduced invasion of CCO cells (p < 0.05). Overall, T6SS mutants demonstrated enhanced resistance to oxidative and nitrosative stress in the nutrient-rich medium compared to the minimal medium. However, EiΔevpA, EiΔevpH, EiΔevpM, EiΔevpN, and EiΔevpO were susceptible to oxidative stress in both nutrient-rich and minimal medium. In fish challenges, EiΔevpD, EiΔevpE, EiΔevpG, EiΔevpJ, and EiΔevpK exhibited attenuation and provided effective protection against E. ictaluri wild-type (EiWT) infection in catfish fingerlings. However, their attenuation and protective efficacy were lower in catfish fry. These findings shed light on the role of the T6SS in E. ictaluri pathogenesis, highlighting its significance in intracellular survival, host cell attachment and invasion, stress resistance, and virulence. The attenuated T6SS mutants hold promise as potential candidates for protective immunization strategies in catfish fingerlings.


Assuntos
Peixes-Gato , Infecções por Enterobacteriaceae , Doenças dos Peixes , Ictaluridae , Sistemas de Secreção Tipo VI , Animais , Edwardsiella ictaluri/genética , Sistemas de Secreção Tipo VI/genética , Virulência , Doenças dos Peixes/prevenção & controle
14.
J Aquat Anim Health ; 35(4): 223-237, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37965694

RESUMO

OBJECTIVE: Proliferative gill disease (PGD) in Channel Catfish Ictalurus punctatus and hybrid catfish (Channel Catfish × Blue Catfish I. furcatus) is attributed to the myxozoan Henneguya ictaluri. Despite evidence of decreased H. ictaluri transmission and impaired parasite development in hybrid catfish, PGD still occurs in hybrid production systems. Previous metagenomic assessments of clinical PGD cases revealed numerous myxozoans within affected gill tissues in addition to H. ictaluri. The objective of this study was to investigate the development and pathologic contributions of H. ictaluri and other myxozoans in naturally and experimentally induced PGD. METHODS: Henneguya species-specific in situ hybridization (ISH) assays were developed using RNAscope technology. Natural infections were sourced from diagnostic case submissions in 2019. Experimental challenges involved Channel Catfish and hybrid catfish exposed to pond water from an active PGD outbreak, and the fish were sampled at 1, 7, 10, 12, 14, 16, 18, and 20 weeks postchallenge. RESULT: Nine unique ISH probes were designed, targeting a diagnostic variable region of the 18S ribosomal RNA gene of select myxozoan taxa identified in clinical PGD cases. Partial validation from pure H. ictaluri, H. adiposa, H. postexilis, and H. exilis infections illustrated species-specific labeling and no cross-reactivity between different myxozoan species or the catfish hosts. After experimental challenge, mature plasmodia of H. ictaluri and H. postexilis formed in Channel Catfish but were not observed in hybrids, suggesting impaired or delayed sporogenesis in the hybridized host. These investigations also confirmed the presence of mixed infections in clinical PGD cases. CONCLUSION: Although H. ictaluri appears to be the primary cause of PGD, presporogonic stages of other myxozoans were also present, which may contribute to disease pathology and exacerbate respiratory compromise by further altering normal gill morphology. This work provides molecular confirmation and more resolute developmental timelines of H. ictaluri and H. postexilis in Channel Catfish and supports previous research indicating impaired or precluded H. ictaluri sporogony in hybrid catfish.


Assuntos
Peixes-Gato , Coinfecção , Doenças dos Peixes , Ictaluridae , Myxozoa , Doenças Parasitárias em Animais , Animais , Peixes-Gato/genética , Brânquias/parasitologia , Mississippi , Coinfecção/veterinária , Doenças dos Peixes/epidemiologia , Doenças Parasitárias em Animais/parasitologia , Myxozoa/genética , Aquicultura
15.
J Comp Physiol B ; 193(6): 631-645, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828355

RESUMO

Commercial aquaculture production of channel catfish (Ictalurus punctatus) occurs in shallow ponds with daily cycling of dissolved oxygen concentration ranging from supersaturation to severe hypoxia. Once daily minimum dissolved oxygen concentration falls below 3.0 mg O2/L, channel catfish have a reduced appetite, leading to reduced growth rates. In other fishes, upregulation of the neuropeptides corticotropin-releasing factor (CRF) and urotensin I (UI) have been implicated as initiating the mechanism responsible for decreasing appetite once an environmental stressor is detected. Channel catfish maintained at 27 °C in aquaria were subjected to varying durations and patterns of hypoxia (1.75 ± 0.07 mg O2/L) to evaluate underlying physiological responses to hypoxia and determine if hypothalamic CRF and UI are responsible for hypoxia-induced anorexia in channel catfish. During a short exposure to hypoxia (12 h), venous PO2 was significantly lower within 6 h and was coupled with an increase of hematocrit and decrease of blood osmolality, yet all responses reversed within 12 h after returning to normoxia. When this pattern of hypoxia and normoxia was repeated cyclically for 5 days, these physiological responses repeated daily. Extended periods of hypoxia (5 days) resulted in similar hematological responses, which did not recover to baseline values during the hypoxia exposure. This study did not find a significant change in hypothalamic transcription of CRF and UI during hypoxia challenges but did identify multiple physiological adaptive responses that work together to reduce the severity of experimentally induced hypoxia in channel catfish.


Assuntos
Hematologia , Ictaluridae , Neuropeptídeos , Animais , Ictaluridae/genética , Hormônio Liberador da Corticotropina/genética , Neuropeptídeos/genética , Hipóxia , Oxigênio , Expressão Gênica
16.
Fish Shellfish Immunol ; 141: 109051, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37689228

RESUMO

Herein, the effects of Agaricus bisporus Polysaccharides (ABPs) on anti-channel catfish virus (CCV) infections to promote their application in channel catfish culture were explored. Transcriptome and metabolome analyses were conducted on the spleen of a CCV-infected channel catfish model fed with or without ABPs. CCV infections upregulated many immune and apoptosis-related genes, such as IL-6, IFN-α3, IFN-γ1, IL-26, Casp3, Casp8, and IL-10, and activated specific immunity mediated by B cells. However, after adding ABPs, the expression of inflammation-related genes decreased in CCV-infected channel catfish, and the inflammatory inhibitors NLRC3 were upregulated. Meanwhile, the expression of apoptosis-related genes was reduced, indicating that ABPs can more rapidly and strongly enhance the immunity of channel catfish to resist viral infection. Moreover, the metabonomic analysis showed that channel catfish had a high energy requirement during CCV infection, and ABPs could enhance the immune function of channel catfish. In conclusion, ABPs can enhance the antiviral ability of channel catfish by enhancing immune response and regulating inflammation. Thus, these findings provided new insights into the antiviral response effects of ABPs, which might support their application in aquaculture.


Assuntos
Doenças dos Peixes , Ictaluridae , Ictalurivirus , Animais , Imunidade , Inflamação , Antivirais
17.
Fish Shellfish Immunol ; 140: 108941, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37463648

RESUMO

To promote the application of Agaricus bisporus polysaccharides (ABPs) in channel catfish (Ictalurus punctatus) culture, we evaluated the effects of ABPs on the growth, immunity, antioxidant, and antibacterial activity of channel catfish. When the amount of ABPs was 250 mg/kg, channel catfish's weight gain and specific growth rates increased significantly while the feed coefficient decreased. We also found that adding ABPs in the feed effectively increased the activities of ACP, MDA, T-SOD, AKP, T-AOC, GSH, and CAT enzymes and immune-related genes such as IL-1ß, Hsp70, and IgM in the head kidney of channel catfish. Besides, long-term addition will not cause pathological damage to the head kidney. When the amount of ABPs was over 125 mg/kg, the protection rate of channel catfish was more than 60%. According to the intestinal transcriptome analysis, the addition of ABPs promoted the expression of intestinal immunity genes and growth metabolism-related genes and enriched multiple related KEEG pathways. When challenged by Yersinia ruckeri infection, the immune response of channel catfish fed with ABPs was intenser and quicker. Additionally, the 16S rRNA gene sequencing analysis showed that the composition of the intestinal microbial community of channel catfish treated with ABPs significantly changed, and the abundance of microorganisms beneficial to channel catfish growth, such as Firmicutes and Bacteroidota increased. In conclusion, feeding channel catfish with ABPs promoted growth, enhanced immunity and antioxidant, and improved resistance to bacterial infections. Our current results might promote the use of ABPs in channel catfish and even other aquacultured fish species.


Assuntos
Doenças dos Peixes , Ictaluridae , Yersiniose , Animais , Antioxidantes/metabolismo , Yersinia ruckeri/fisiologia , RNA Ribossômico 16S , Dieta/veterinária , Polissacarídeos
18.
J Fish Biol ; 103(5): 1178-1189, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37492948

RESUMO

There is a pressing need for more-holistic approaches to fisheries assessments along with growing demand to reduce the health impacts of sample collections. Metabolomic tools enable the use of sample matrices that can be collected with minimal impact on the organism (e.g., blood, urine, and mucus) and provide high-throughput, untargeted biochemical information without the requirement of a sequenced genome. These qualities make metabolomics ideal for monitoring a wide range of fish species, particularly those under protected status. In the current study, we surveyed the relative abundances of 120 endogenous metabolites in epidermal mucus across eight freshwater fish species belonging to seven phylogenetic orders. Principal component analysis was used to provide an overview of the data set, revealing strong interspecies relationships in the epidermal mucous metabolome. Normalized relative abundances of individual endogenous metabolites were then used to identify commonalities across multiple species, as well as those metabolites that showed notable species specificity. For example, taurine was measured in high relative abundance in the epidermal mucus of common carp (Cyprinus carpio), northern pike (Esox lucius), golden shiner (Notemigonus crysoleucas), rainbow trout (Oncorhynchus mykiss), and rainbow smelt (Osmerus mordax), whereas γ-amino butyric acid (GABA) exhibited a uniquely high relative abundance in flathead catfish (Pylodictis olivaris). Finally, hierarchical cluster analysis was used to evaluate species relatedness as characterized by both the epidermal mucous metabolome (phenotype) and genetic phylogeny (genotype). This comparison revealed species for which relatedness in the epidermal mucous metabolome composition closely aligns with phylogenetic relatedness (e.g., N. crysoleucas and C. carpio), as well as species for which these two measures are not well aligned (e.g., P. olivaris and Polyodon spathula). These, and other findings reported here, highlight novel areas for future research with fish, including development of epidermal mucous-based markers for non-invasive health monitoring, sex determination, and hypoxia tolerance.


Assuntos
Carpas , Cyprinidae , Ictaluridae , Oncorhynchus mykiss , Osmeriformes , Animais , Filogenia , Metaboloma , Esocidae , Muco , Água Doce , Oncorhynchus mykiss/metabolismo
19.
Transgenic Res ; 32(4): 251-264, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37468714

RESUMO

Channel catfish, Ictalurus punctatus, have limited ability to synthesize Ω-3 fatty acids. The ccßA-msElovl2 transgene containing masu salmon, Oncorhynchus masou, elongase gene driven by the common carp, Cyprinus carpio, ß-actin promoter was inserted into the channel catfish melanocortin-4 receptor (mc4r) gene site using the two-hit two-oligo with plasmid (2H2OP) method. The best performing sgRNA resulted in a knockout mutation rate of 92%, a knock-in rate of 54% and a simultaneous knockout/knock-in rate of 49%. Fish containing both the ccßA-msElovl2 transgene knock-in and mc4r knockout (Elovl2) were 41.8% larger than controls at 6 months post-hatch (p = 0.005). Mean eicosapentaenoic acid (EPA, C20:5n-3) levels in Elov2 mutants and mc4r knockout mutants (MC4R) were 121.6% and 94.1% higher than in controls, respectively (p = 0.045; p = 0.025). Observed mean docosahexaenoic acid (DHA, C22:6n-3) and total EPA + DHA content was 32.8% and 45.1% higher, respectively, in Elovl2 transgenic channel catfish than controls (p = 0.368; p = 0.025). To our knowledge this is the first example of genome engineering to simultaneously target transgenesis and knock-out a gene in a commercially important aquaculture species for multiple improved performance traits. With a high transgene integration rate, improved growth, and higher omega-3 fatty acid content, the use of Elovl2 transgenic channel catfish appears beneficial for application on commercial farms.


Assuntos
Carpas , Ictaluridae , Oncorhynchus , Animais , Ictaluridae/genética , Elongases de Ácidos Graxos/genética , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Animais Geneticamente Modificados/genética , Oncorhynchus/genética
20.
Environ Pollut ; 333: 121911, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37328123

RESUMO

Channel catfish (Ictalurus punctatus) are an important global aquaculture species. To explore gene expression patterns and identify adaptive molecular mechanisms in catfish during salinity stress, we performed growth comparison and comparative transcriptome sequencing on liver tissue. Our study revealed that salinity stress has a significant impact on the growth, survival, and antioxidant system of channel catfish. 927 and 1356 significant DEGs were identified in L vs. C group and H vs. C group. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses suggested that both high and low salinity stress affected gene expression related to oxygen carrier activity, hemoglobin complex, and oxygen transport pathways, and also amino acid metabolism, immune responses, and energy and fatty acid metabolism in catfish. Among mechanisms, amino acid metabolism genes were significantly up-regulated in the low salt stress group, immune response genes were significantly up-regulated in the high salt stress group, and fatty acid metabolism genes were significantly up-regulated in both groups. These results provided a platform for unraveling steady-state regulatory mechanisms in channel catfish under salinity stress, and may limit the impact of extreme salinity changes on catfish during aquaculture practices.


Assuntos
Peixes-Gato , Ictaluridae , Animais , Transcriptoma , Ictaluridae/genética , Ictaluridae/metabolismo , Perfilação da Expressão Gênica , Estresse Salino/genética , Peixes-Gato/genética , Peixes-Gato/metabolismo , Oxigênio/metabolismo , Aminoácidos , Ácidos Graxos , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...